

Available online at www.sciencedirect.com

Journal of Nuclear Materials 334 (2004) 35-39

www.elsevier.com/locate/jnucmat

Reduction of UO_2^{2+} by H_2

Ella Ekeroth ^{a,*}, Mats Jonsson ^a, Trygve E. Eriksen ^a, Kristina Ljungqvist ^a, Sándor Kovács ^b, Ignasi Puigdomenech ^{b,1}

^a Department of Chemistry, Nuclear Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

^b Department of Chemistry, Inorganic Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Received 17 December 2003; accepted 23 April 2004

Abstract

The reactivity of H₂ towards UO_2^{2+} has been studied experimentally using a PEEK coated autoclave where the UO_2^{2+} concentration in aqueous solution containing 2 mM carbonate was measured as a function of time at $p_{H_2} \sim 40$ bar. The experiments were performed in the temperature interval 74–100 °C. In addition, the suggested catalytic activity of UO_2 on the reduction of UO_2^{2+} by H₂ was investigated. The results clearly show that H₂ is capable of reducing UO_2^{2+} to UO_2 without the presence of a catalyst. The reaction is of first order with respect to UO_2^{2+} . The activation energy for the process is 130 ± 24 kJ mol⁻¹ and the rate constant is $k_{298K} = 3.6 \times 10^{-9}$ lmol⁻¹ s⁻¹. The activation enthalpy and entropy for the process was determined to 126 kJ mol⁻¹ and 16.5 J mol⁻¹ K⁻¹, respectively. Traces of oxygen were shown to inhibit the reduction process. Hence, the suggested catalytic activity of freshly precipitated UO_2 on the reduction of UO_2^{2+} by H₂ could not be confirmed.

© 2004 Elsevier B.V. All rights reserved.

1. Introduction

One of the key issues for the safety assessment of a spent nuclear fuel repository according to the KBS-3 concept [1] is dissolution of the UO₂-matrix accompanied by release of actinides and fission products. As has been shown in numerous studies [2–5], this process is enhanced by oxidizing radiolysis products (OH[•], H₂O₂, HO[•]₂ and O₂) formed in the otherwise reducing groundwater. However, radiolysis of water also results in production of reductants, i.e., e^-_{aq} , H[•] and H₂ that could act as inhibitors for oxidative dissolution. In addition, when the shielding copper canister fail (this being a prerequisite for radiolysis of water to occur in the first place), anoxic ground water will come in contact with the innermost cast iron. Anaerobic corrosion of the

^{*} Corresponding author. Tel.: +46-8 790 9279; fax: +46-8 790 8772.

E-mail address: ella@nuchem.kth.se (E. Ekeroth).

¹ Present address: SKB, SE-10240 Stockholm, Sweden.

cast iron canisters will produce large amounts of H_2 resulting in an overall reducing environment according to reaction (1) [4]:

$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2 \tag{1}$$

The possible inhibiting effect of H_2 on dissolution of spent nuclear fuel has so far not been studied explicitly. One obvious effect of increased levels of H_2 is the reaction with OH[•], which inevitably will suppress the production of radiolytical oxidants, reaction (2):

$$OH^{\bullet} + H_2 \rightarrow H_2O + H^{\bullet}$$
 (2)

 $k_{298K} = 4 \times 10^7 \, 1 \, \text{mol}^{-1} \, \text{s}^{-1} \, (\text{pH} = 5) \quad [6].$

Another plausible effect is reduction of dissolved UO_2^{2+} to $UO_2(s)$. This reaction is thermodynamically feasible $(\Delta G^\circ = -86.3 \text{ kJ mol}^{-1})$, however, the activation barrier and thereby the rate constant for the uncatalyzed process has not been established previously. The reduction of UO_2^{2+} was first studied in the 1950's as a step in the production of nuclear fuel. Carbonate solutions were

used for leaching U(VI) from ores. These solutions were treated with H₂ ($p_{H_2} = 6-20$ bar) at 100–200 °C in the presence of a catalyst. Cobalt, platinum and nickel were used as catalysts. Later it was suggested that the product UO₂ was itself catalyzing the reaction [7].

Consequently, there are at least two ways by which H₂ can affect the concentration of uranium in solution: (1) Dissolution of spent nuclear fuel (UO₂) can be inhibited by reactions between oxidants and H₂ in a protecting step. (2) Reduction of already dissolved UO₂²⁺ or U(VI) on the spent nuclear fuel surface to UO₂. It should be noted that the reduction of UO₂²⁺ by H₂ in solution is not expected to affect the release of fission products and actinides significantly. The aim of this work is to study the kinetics (at $p_{H_2} \sim 40$ bar) of the possible reaction between H₂ and UO₂²⁺ in aqueous solution.

2. Experimental

All chemicals of the purest grade available were used as supplied. Millipore water was used for all solutions. Uranyl solutions were prepared using UO2(NO3)2 · 6H2O (Merck, PA). The gases used in the experiments were H_2 (Hydrogen+, AGA), Ar (Argon instrument, AGA) and Ar containing 5% O_2 (AGA). The UO₂-powder was supplied from Westinghouse Atom Co. The UO2-powder has a surface area of 5.85 m² g⁻¹ (Micromeritics Flow Sorb II 2300; He/N₂:70/30, BET-method: single point surface area measurement), O/U is 2.12 according to the supplier. The powder was washed with concentrated carbonate solution, distilled water and ethanol prior to use. The reaction vessel used was specially manufactured for these experiments (Métro Mesures). The vessel consists of a thermostated stainless steel autoclave with an internal vessel made of polyether ether ketone (PEEK). PEEK is used for all details and surfaces in direct contact with the solution in order to minimize catalytic effects of the vessel itself. The volume of the PEEK vessel is 2 dm³. The vessel is also equipped with a stirrer and inlet and outlet tubes for pressurizing and sampling.

All experiments were carried out at a gas pressure of approximately 40 bar and the temperature was in the range 74–100 °C. The solutions were heated to the desired temperature and purged with Ar for a period of 24 h before the experiment started unless otherwise stated. The initial concentration of $UO_2(NO_3)_2$ was ~10 μ M and the carbonate concentration was 2 mM (Swedish groundwater contains ~2 mM carbonate [8]). The ura-nyl concentration of the solutions was measured using a Scintrex UA-3 Uranium Analyser [9].

3. Results and discussion

In Fig. 1, the uranyl concentration is plotted as a function of reaction time at four different temperatures.

Under the experimental conditions defined above the predominating U(VI)-species is $UO_2(CO_3)_3^{4-}$ [10]. In contrast to the conclusions of earlier studies [11], H₂ appears to reduce the UO_2^{2+} concentration also in the absence of a catalyst. The reactivity of uranyl follows first order kinetics, which is most obvious at the highest temperature, Fig. 1.

When opening the reaction vessel after the experiment a black precipitate was observed. The visual appearance of the precipitate strongly resembled that of UO_2 -powder. To identify the black solid product we performed an experiment using a solution containing about 1 mM uranyl and 20 mM NaHCO₃. The black solid product found when the experiment was terminated was isolated, dried and analyzed by X-ray powder diffraction (Rigaku). The diffraction pattern is presented in Fig. 2. Clearly, the diffraction pattern of the product matches the lines for UO_2 . However, the high background follows a radial distribution function, RDF, which is characteristic for non-crystalline material. Thus, a significant part of the UO_2 produced in the reduction of uranyl by H₂ appears to be amorphous.

The first order rate constant at each temperature is divided by the H_2 concentration ² to obtain the second order rate constant, Table 1. The logarithm of the second order rate constant is plotted against the inverted temperature according to the Arrhenius equation (3):

$$k = A e^{-Ea/RT} \tag{3}$$

The activation energy for H₂ reduction of UO_2^{2+} is calculated to be 130 ± 24 kJ mol⁻¹, and the rate constant is $k_{298K} = 3.6 \times 10^{-9}$ 1mol⁻¹ s⁻¹, Fig. 3. By using the Eyring equation (4),

$$k = \frac{k_{\rm B}T}{h} \times e^{\Delta S^{\ddagger}/R} \times e^{-\Delta H^{\ddagger}/RT} = \frac{k_{\rm B}T}{h} \times e^{-\Delta G^{\ddagger}/RT},$$
(4)

the activation enthalpy (ΔB^{\dagger}) and the activation entropy (ΔS^{\dagger}) can be determined. For the present reaction, $\Delta H^{\ddagger} = 126 \text{ kJ mol}^{-1}$ and $\Delta S^{\ddagger} = 16.5 \text{ J mol}^{-1} \text{ K}^{-1}$.

The activation energy for H₂ reduction of UO_2^{2+} catalyzed by nickel is 41 kJ mol⁻¹ [11]. The uranyl and carbonate concentrations used by Forward and Halpern were 100 and 1000 times higher than in this work. The UO₂ precipitation was studied under $p_{H_2} = 27$ atm and a temperature interval 121–177 °C. The reaction time needed for complete reduction of UO_2^{2+} was less than

² At $p_{H_2} = 39$ bar, and T = 373.15 K the mol fraction of dissolved H₂ in water is determined to be 0.000595 [12]. Since the temperature interval is relatively small (348–373 K), the mol fraction is set to be constant, which should not affect the calculations considerably [13]. The hydrogen pressure in the experiments is fluctuating between 39 and 42 bar. Assuming that the amount dissolved hydrogen is small compared to the mol fraction dissolved water: $[H_2]_{aq} = 0.033$ M.

Fig. 1. The concentration of UO_2^{2+} as a function of time at $p_{H_2} \sim 40$ bar. (\bullet): T = 74 °C, (\blacksquare): T = 83 °C, (\bullet): T = 89 °C, (\blacktriangle): T = 100 °C.

1 h. The considerable difference between the two activation energies shows how effective the Ni-catalyst is. Forward and Halpern showed that without a catalyst, no reduction would occur. The time scale for their experiment was less than 4 h. Given our experimental

Fig. 3. Arrhenius plot for the reaction between H_2 and UO_2^{2+} .

results presented above, this time window is far too small to observe a significant decrease in UO_2^{2+} concentration. Since the time horizon for storage of spent nuclear fuel exceeds the experimental time scales by several orders of magnitude, slow processes such as the uncatalyzed reduction of UO_2^{2+} must also be accounted for. It should be noted that Bunji and Zogovic [14] concluded that freshly precipitated UO_2 worked very

Fig. 2. X-ray powder diffraction pattern for the black product formed upon reduction of uranyl by H_2 compared to the expected lines for UO_2 .

Table 1

Measured first order rate constants and calculated second order rate constants, k, for the reaction between H₂ and UO₂²⁺ at different temperatures

$k_{[\text{uranyl}]}$ (h ⁻¹)	$k_{[uranyl]}/[H_2] (l mol^{-1} h^{-1})$	$\ln k$	$1/T (K^{-1})$
5.01×10^{-4} 3 40 × 10^{-3}	1.52×10^{-2} 1.03 × 10^{-2}	-4.19 -2.27	2.88×10^{-3} 2.81 × 10^{-3}
4.55×10^{-3}	1.38×10^{-1}	-1.98	2.81×10^{-3}
1.17×10^{-2}	3.55×10^{-1}	-1.03	2.68×10^{-3}

well as a catalyst for the reaction. However, dried precipitated UO_2 did not show any catalytic effect. The catalytic reactions were found to be of first order with respect to catalyst surface and hydrogen pressure and zero order with respect to UO_2^{2+} concentration. Forward and Halpern believed that the reason why the precipitation rate was independent of the concentration of UO_2^{2+} was that the catalyst surface became saturated with adsorbed uranium under the experimental conditions used. However, the experimental results presented in Fig. 1 do not display any autocatalytic behavior. Hence, the UO_2 produced in the uncatalyzed H_2 reduction of UO₂²⁺ does not show any significant catalytic activity. To further study the suggested catalytic effect of UO₂ we conducted experiments where UO_2^{2+} was added to the solution after consumption of the initially added UO_2^{2+} , i.e., two consecutive experiments where performed in the same solution. The freshly precipitated UO₂ produced in the first part of the experiment was thereby never dried nor exposed to air. In another experiment commercial UO₂ powder was added to the solution prior to the experiment. None of these experiments showed any increased reactivity due to the presence of UO₂. Long-term experiments where commercial UO₂ was added to the reaction vessel pressurized with Ar instead of H2 displayed a slow decrease in UO_2^{2+} concentration. This can probably be attributed to sorption of UO_2^{2+} onto UO_2 . Experiments performed in the absence of solid UO₂ using Ar to pressurize the vessel showed no significant decrease in UO_2^{2+} concentration over a period of 1000 h.

To assess the possible (although improbable) catalytic capacity of the reaction vessel material, PEEK, we performed an experiment in the presence of PEEK powder. In this experiment the PEEK surface exposed to the solution was 20 times higher than the vessel itself. The rate of UO_2^{2+} reduction was not significantly affected by the increased PEEK surface. Hence, we can conclude that PEEK has no catalytic activity on this process.

In some of the initial experiments performed at the lowest temperature the dynamics of the process was far from obvious (Fig. 4).

During the first 100–150 h the UO_2^{2+} concentration did not change significantly. This period was followed by a short period during which the process accelerated until reaching a rate similar to that given in Fig. 1. This behavior was first erroneously interpreted as the process being autocatalyzed as suggested in the literature. However, it soon became apparent that the initial lagphase could depend on traces of oxygen not being removed during the Ar-purging. To test this hypothesis we conducted an experiment where the solution was purged with Ar containing 5% O₂ prior to pressurizing the vessel with H₂. The result of this experiment is shown in Fig. 5.

Fig. 4. The concentration of UO_2^{2+} as a function of time at $p_{H_2} \sim 40$ bar and T = 74 °C.

As can be seen, the UO_2^{2+} concentration does not decrease significantly over a period of 1000 h. Hence, the presence of O₂ clearly inhibits the reduction of UO_2^{2+} by H₂. When initially adding UO₂ powder to the experiments performed the lag-phase was considerably shortened. This was also initially mistaken as a proof for the catalytic activity of UO₂. To further elucidate the effect of UO₂ we added a portion to a solution purged with Ar containing 5% O₂ and thereafter pressurized the vessel with H₂. The result is shown in Fig. 6.

In this case the UO_2^{2+} concentration decreases after a considerable lag-phase. The lag-phase in this system is 50–100 times longer than the lag-phase observed in the experiments using UO₂ containing solutions purged with pure Ar prior to pressurizing with H₂. This difference can be attributed to the O₂ concentration being much higher in the experiment presented in Fig. 6. The obvious conclusion to be drawn from these experiments is that UO₂ either consumes (reduces) the oxygen present in the solution or catalyzes the reaction between H₂ and O₂ and thus reduces the oxygen dependent lag-phase.

Fig. 5. The concentration of UO_2^{2+} as a function of time at $p_{H_2} \sim 40$ bar and T = 74 °C. The solution was purged with 5% O₂ in Ar prior to pressurizing with H₂.

Fig. 6. The concentration of UO_2^{2+} as a function of time at $p_{H_2} \sim 40$ bar and T = 74 °C. 100 mg UO₂ is present in the solution purged with 5% O₂ in Ar prior to pressurizing with H₂.

Acknowledgements

Swedish Nuclear Fuel and Waste Management Co. is gratefully acknowledged for financial support.

References

 SKBF/KBS, Swedish Nuclear Fuel Supply Co., Stockholm, 1983.

- [2] T.E. Eriksen, U.-B. Eklund, L. Werme, J. Bruno, J. Nucl. Mater. 227 (1995) 76.
- [3] J. Bruno, E. Cera, M. Grivé, U.-B. Eklund, T.E. Eriksen, SKB-Technical Report TR-99-26, 1999, p. 1.
- [4] N.R. Smart, D.J. Blackwood, L. Werme, SKB-Technical Report TR-01-22, 2001, p. 1.
- [5] J. Bruno, E. Cera, M. Grivé, L. Duro, T.E. Eriksen, SKB-Technical Report TR-03-03, 2003, p. 1.
- [6] A.B. Ross, B.H.J. Bielski, G.V. Buxton, D.E. Cabelli, C.L. Greenstock, W.P. Helman, R.E. Huie, J. Grodkowski, P. Neta, in: NDRL/NIST Solution Kinetics Database, 1992.
- [7] R.C. Merritt, The Extractive Metallurgy of Uranium, Colorado School of Mines Research Institute, Golden, 1971.
- [8] J.A.T. Smellie, M. Laaksoharju, P. Wikberg, J. Hydrol. 172 (1995) 147.
- [9] J.C. Robbins, CIM Bull. 71 (1978) 61.
- [10] I. Grenthe, F. Diego, F. Salvatore, G. Riccio, J. Chem. Soc., Dalton Trans. 11 (1984) 2439.
- [11] F.A. Forward, J. Halpern, Can. Min. Metall. Bull. 56 (1953) 645.
- [12] E.L. Stephen, N.S. Hatfield, R.S. Peoples, H.A.H. Pray, in: C.L. Young (Ed.), Solubility Data Series, Pergamon, Oxford, 1981.
- [13] H.A. Pray, C.E. Schweickert, B.H. Minnich, Ind. Eng. Chem. 44 (1952) 1146.
- [14] B. Bunji, B. Zogovic, in: Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, vol. 3, 1958, p. 350.